## CHAPTER II.

## PHYSIOGRAPHY.

## § 1. General Description of Australia.

1. Geographical Position.-(i) General. The Australian Commonwealth, which ineludes the island continent of Australia proper and the island of Tasmania, is situated in the Southern Hemisphere, and comprises in all an area of about 2,974,581 square miles, the mainland alone containing about $2,948,366$ square miles. Bounded on the west and east by the Indian and Pacific Oceans respectively, it lies between longitudes $113^{\circ} 9^{\prime}$ E. and $153^{\circ} 39^{\prime}$ E., while its northern and southern limits are the parallels of latitude $10^{\circ} 4 \mathrm{I}^{\prime} \mathrm{S}$. and $39^{\circ} 8^{\prime} \mathrm{S}$., or, including Tasmania, $43^{\circ} 39^{\prime} \mathrm{S}$. On its north are the Timor and Arafura Seas and Torres Strait-on its south the Southern Ocean and Bass Strait. The extreme points are "Steep Point" on the west, "Cape Byron" on the east, "Cape York " on the north, "Wilson's Promontory " on the south, or, if Tasmania be included, " South-East Cape."
(ii) Tropical and Temperate Regions. Of the total area of Australia nearly 40 per cent. lies within the tropics. Assuming, as is usual, that the latitude of the Tropic of Capricorn is $23^{\circ} 30^{\prime} \mathrm{S}$. (its mean value for 1944 was $23^{\circ} 26^{\prime} 47.65^{\prime \prime}$ ), the areas within the tropical and temperate zones are approximately as follows :-

- AUSTRALIA : AREAS OF TROPICAL AND TEMPERATE REGIONS.
(Areas of States and Territory Partially withen Tropics.)

| Arca. | Quentinut | Western <br> Australia. | Northern <br> 'Territory. | Tutal. |
| :---: | :---: | :---: | :---: | :---: |
| Within Tropical Zone sq. miles | 359,000 | 364:000 | 426,320 | 1,149,320 |
| , Temperate Zone $\quad$, " | 311,500 | 611,920 | 97,300 | 1,020,720 |
| Ratio of Tropical part to whole State.. | 0.535 | 0.373 | 0.814 | 0.530 |
| Temperate part to whole State | 0.465 | 0.627 | 0.186 | 0.470 |

Thus the tropical part is roughly about one-half $(0.530)$ of the three territories mentioned above, or about five-thirteenths of the whole of Australia ( 0.386 ).
2. Area of Australia compared with Areas of other Countries.-The area of Australia is almost as great as that of the United States of America, four-fifths of that of Canada, more than one-fifth of the area of the British Empire, nearly three-fourths of the whole area of Europe, and about 25 times as large
as Great Britain and Ireland. 'This great area, coupled with a limited population, rendere the solution of the problem of Australian development a particularly difficult one. The areas of Australia and of certain other countries are given in the following table :-

## area of australia and OF OTHER COUNTRIES, Circa 1939.



The countries and areas given in the table are those obtaining before the 1939 War and have been extracted from the Statistical Year Book of the League of Nations.
3. Areas of Political Subdivisions.-As already stated. Australia consists of six States and the Northern and Australian Capital Territories. The areas of these, and their proportions of the total of Australia, are shown in the following table:-

4. Coastal Configuration.-(i) General. There are no striking features in the configuration of the coast; the most remarkable indentations are the Gulf of Carpentaria on the north and the Great Australian Bight on the south. The Cape York Peninsula on the extreme north is the only other remarkable feature in the outline. In Official Year Book No. 1, an enumeration is given of the features of the coast-line of Australia (see pp. 6o-68).
(ii) Coast-line. The lengths of coast-line, excluding minor indentations, of each State and of the whole continent, and the area per mile of coast-line, are shown in the following table:-

(a) Includes Australian Capital Territory.
(b) Area $2.948,366$ square miles.

For the entire Commonwealth of Australia this gives a coast-line of 12,210 miles and an average of 244 square miles for one mile of coast-line. According to Strelbitski, Europe has only 75 square miles of area to each mile of coast-line, and, according to recent figures, England and Wales have only one-third of this, namely, 25 square miles.
(iii) Historical Significance of Coastal Names. It is interesting to trace the voyages of some of the early navigators by the names bestowed by them on various coastal features-thus Dutch names are found on various points of the Western Australian
coast, in Nuyts' Archipelago, in the Northern 'Territory, and in the Gulf of Carpentaria; Captain Cook can be followed along the coasts of New South Wales and Queensland; Flinders' track is easily recognized from Sydney southwards, as far as Cape Catastrophe, by the numerous Lincolnshire names bestowed by him; and the French navigators of the end of the eighteenth and the beginning of the nineteenth century have left their names all along the Western Australian, South Australian and Tasmanian coasts.
5. Geographical Features of Australia.-In each of the carlier issues of the Official Year Book fairly complete information has been given concerning some special geographical element. The nature of this information and its position in the various issues can be readily ascertained on reference to the special index following the index to maps and graphs at the end of this issue.
6. Fauna, Flora, Geology and Seismology of Australia.-Special articles dealing with these features have appeared in previous issues of the Official Year Book, but limits of space naturally preclude their repetition in each volume. As pointed out in par. 5, however, the nature and position of these articles can be readily ascertained from the special index.

## § 2. Climate and Meteorology of Australia.*:

I. Introductory.-In Official Year Book No. 3, pp. 79 and So, some account is given of the history of Australian meteorology. incluting a reference to the development of magnetic observations. In Official Year Book No. 4, pp. 84 and 87 , will be found a short sketch of the creation and organization of the Commonwealth Burean of Meteorology, and a résumé of the subjects dealt with at the Meteorological Conference in 1907.
2. Meteorological Publications.-Reference to publications issued by the Central Meteorological Bureau appears in Official Year Book No. 22, pp. 40 and 41, and No. 34, p. II. The following publications have since been issued:-Bulletin No. 28, "Duststorms in Australia"; Bulletin No. 29, "Report on the Divergence Theory of the Formation of Cyclones"; Bulletin No. 30, "Synoptic Analysis over South-West Pacific Area"; Bulletin No. 3r, "Coastal Fogs in Australia"; and "Set of Typical Summer and Winter Weather Charts (for use in Schools) ".
3. Equipment.-The determination of the climatological data has been made by records of the following instruments:-
(i) Rainfall. Rainfall has been measured by a cylindrical gauge generally 8 inches in diameter.
(ii) Temperature. Extreme daily temperatures have been recorded by means of self-registering maximum and minimum thermometers which are read and set daily.
(iii) Humidity. Humidities have been determined by the aid of tables from readings of dry and wet bulb thermometers.
(iv) Atmospheric Pressure. Pressures have been measured by mercurial barometers of the Kew (or Fortin) pattern.
(v) Evaporation. The standard evaporimeter in use consists of a cylindrical galvanized iron tank 3 feet in diameter and 3 feet deep, with a water jacket. Concrete tanks of similar form and dimensions are also used.
(vi) Wind. Data concerning wind have been obtained either by "Robinson" cup anemometer, "Dines" pressure tube anemometer or by "Machin" cup anemometer.
4. General Description of Australia.-A considerable portion ( 0.530 ) of three divisions of Australia is north of the tropic of Capricorn-that is to say, within Queensland, Western Australia and the Northern Territory, no less than 1,149,320 square miles

* Prepared from data supplied by the Director, Commonwealth Meteorological Burean.
belong to the tropical zone and $1,020,720$ to the temperate zone. The whole area of Australia within the temperate zone, however, is $1,825,261$ square miles; thus the tropical part is about o.386, or about five-thirteenths of the whole, or the "temperate" region is half as large again as the "tropical" (more accurately 1.588). By reason of its insular geographical position and the absence of striking physical features whether in marine gulfs or in important mountains, Australia is, on the whole, less subject to extremes of weather than are regions of similar area in other parts of the globe, and latitude for latitude Australia is, on the whole, more temperate.

The average elevation of the surface of the land is low, probably close to 900 feet above the sea. The altitudes range up to a little over 7,300 feet, hence its climate embraces a great many features, from the characteristically tropical to what is essentially alpine, a fact indicated in some measure by the name Australian Alps given to the southern portion of the Great Dividing Range.

On the coast, the rainfall is often abundant and the atroosphere moist, but in some portions of the interior is very limited, and the atmosphere dry. The distribution of forest, therefore, with its climatic influence, is very uneven. In the interior, in plaoes, there are fine belts of trees, but there are large areas also which are trecless, and here the air is hot and parching in summer. Again, on the coast, even so far south as latitude $35^{\circ}$, the vegetation is tropical in its luxuriance, and to some extent also in charaoter. Climatologically, therefore, Australia may be said to present a great variety of features.
5. Meteorological Divisions.-(i) General. Reference to the divisions adopted by the Commonwealth Meteorologist will be found in Official Year Book No. 22, p. 41.
(ii) Special Climatological Stations. The latitudes, longitudes and altitudes of special stations, the climatological features of which are graphically represented hereinafter, are as follows :-

SPECIAL CLIMATOLOGICAL STATIONS : AUSTRALIA.

| Locality. | Height above Sea | $\stackrel{\text { Lntitude. }}{\text { s. }}$ |  | Longitude. |  | Locality. | $\begin{gathered} \text { Height } \\ \text { above } \\ \text { sena } \\ \text { sevel. } \end{gathered}$ |  |  | Iongitude |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fert. | deg. | min. | deg. | min. |  | reet. | deg. |  | deg. |  |
| rth | 197 | 31 | 57 | 15 | $5{ }^{\text {i }}$ | Canherra | 1,906 | 35 | 18 | 149 |  |
| Adelaide | 140 | 34 | 56 | 138 | 35 | Darwin | 97 | 12 | 28 | 130 | 51 |
| Brisba | 13. | 27 | 28 | 153 | 2 | Alice Springs | 1,901 | 23 | 38 | 133 | 37 |
| Sydney | 138 | 33 | 52 |  | 12 | Dubbo | 870 |  |  | $14^{8}$ |  |
| Melbourne | 114 | 37 | 49 | 144 | 58 | Laverton,W.A. | 1,50i) | 28 | 40 | 122 | 23 |
| art | 177 | 42 | 53 | 147 | 20 | Coolgardir | ' 1.389 | 30 | 57 | 121 | 10 |

6. Temperatures.-(i) Comparisons with other Countries. In respect of Australian temperatures generally, it may be pointed out that the mean annual isotherm for $70^{\circ}$ Fahrenheit extends in South America and South Africa as far south as latitude $33^{\circ}$, while in Australia it reaches only as far south as latitude $30^{\circ}$, thus showing that, on the whole, Australia has. latitude for latitude, a more temperate climate than other places in the Southern Hemisphere.

The comparison is even more favourable when the Northern Hemisphere is included, for in the United States of America the $70^{\circ}$ isotherm extends in several of the western States as far north as latitude $41^{\circ}$. In Eurnpe, the same isotherm reaches almost to the southern shores of Spain, passing afterwards, however, along the northern shores of Africa till it reaches the Red Sea, when it bends northward along the eastern shore of the Mediterranean till it reaches Syria. In Asia, nearly the whole of the land area south of latitude $40^{\circ} \mathrm{N}$. has a higher temperature than $70^{\circ}$.

The extreme range of temperature is less than $100^{\circ}$ over practically the whole of Australia, that figure being only slightly exceeded at a very few places; it is mostly $70^{\circ}$ to $90^{\circ}$ over inland areas, and somewhat less on the coast. In parts of Asia and North America, the extreme range exceeds $130^{\circ}$ and $150^{\circ}$ in some localities.

Along the northern shores of Australia the temperatures are very equable. At Darwin, for example, the difference in the means for the hottest and coldest months is only $8.4^{\circ}$, and the extreme readings for the year, or the highest maximum on record and the lowest minimum, show a difference of under $50^{\circ}$.
(ii) Hottest and Coldest Parts. A comparison of the temperatures recorded at coast and inland stations shows that, in Australia, as in other continents, the range increases with increasing distance from the coast.

In the interior of Australia, and during exceptionally dry summers, the temperature occasionally reaches or exceeds $120^{\circ}$ in the shade, and, considering Australia as a whole, frosts may occur within a few miles of the coastline over the entire continent except in the Northern Territory and in a considerable area of Northern Queensland. The hottest area of the continent is situated in the northern part of Western Australia about the Marble Bar and Nullagine gold-fields, where the maximum shade temperature during the summer sometimes exceeds $100^{\circ}$ continuously for days and weeks. The coldest part of Australia is the extreme south-east of New South Wales and extreme east of Victoriathe region of the Australian Alps. Here the temperature seldom, if ever, reaches $100^{\circ}$ even in the hottest of seasons, while in winter, readings slightly below zero are occasionally recorded.

Tasmania as a whole enjoys a most moderate and equable range of temperature throughout the year, although occasionally hot winds may cause the temperature to rise to $100^{\circ}$ in the eastern part of the State.
(iii) Monthly Maximum and Minimum Temperatures. The normal monthly maximum and minimum temperatures can be best shown by means of graphs, which exhibit the nature of the fluctuation of each for all available years. In the diagram herein for nine representative places in Australia, the upper heavy curves show the mean maximum, and the lower heavy curves the mean minimum temperatures based upon daily observations, while the length of the interval between these two heary curves shows the average difference between the highest and the lowest temperatures of the twenty-four hours.
7. Humidity.-After temperature, humidity is the most important element of climate particularly as regards its effects on human comfort, rainfall supply, and conservation and related problems.

In this publication the humidity of the air has been graphically represented by its vapour pressure (i.e., the partial pressure of the water vapour measured in inches of mercury). The humidity has also been expressed by the relative humidity which is the quotient of the vapour pressure divided by the saturation vapour pressure and multiplied by one hundred. The mean 9 a.m. relative humidity, as well as its highest and lowest recorded mean values at 9 a.m., have been given in the tables of climatological data for the capital cities included herein. The mean monthly vapour pressure has also been added to these tables.

The annual curve of vapour pressure derived from the normal monthly ralves for this element is comparable with the maximum and minimum temperature curves, but the relative humidities consisting as they do of the extremes for each month do not show the normal annual fluctuation which would be approximately midway between the extremes.

The order of stations in descending values of 9 a.m. vapour pressure is Darwin, Brisbane, Sydney, Perth, Melbourne, Adelaide, Canberra, Hobart and Alice Springs, while the relative humidity diminishes in the order, Sydney, Canberra, Melbourne, Darwin, Hobart, Brisbane, Perth, Adelaide and Alice Springs.

AVERAGE ANNUAL FLUCTUATIONS OF NORMAL MAXIMOM AND MINIMEM TEMPERATURE AND HUMDDIS.

fisponsatios,--The upper and lower heavy bius in each graph represent the mean maximum and mean minimum temperatures respectively. The lahrenheit temperature scales are shown on the outer edge of the sheet under "F" and the centigrade scates in the two inner columm under "C.

The broken lite shows the mormal absolute humidity in the form of 9 a.m. vapour pressures for which the figures in the outer "F "columns represent hundredthe of an inch of baronctric pressure.

The upper and lower fine lines join the areatest and the least monthly means of relative humidity respectisely, the figures under the outer columns " $\mathbf{F}$ " indicating percentage values.

The curves for temperature and vapour pressure joining the mean monthly values serve to show the anmual fluctuation of these elements, but the relative humidity graphs joining the extreme values for each month do not indicate ans normal annual variation.

Comparison of the maximum and minimum tenperature curves affords a measure of the mean diurnal range of temperature. At Perth in the middle of January, for jostance, there is normally a range of $21^{\circ}$ from $63^{\circ} \mathrm{F}$. to $84^{\circ} \mathrm{F}$., but in July it is only $15^{\circ}$ from $4 \mathrm{~S}^{\circ} \mathrm{F}$. to $63^{\circ} \mathrm{F}$.

The relative humidity curves illustrate the extreme range of the mean monthly humidity over a number of years.

MEAN MONTHLY RAINFALL AND EVAPORATION.



Fxplanation.-On the preceding grapha thick lines denote rainfall, and thin lines evaporation, and ghow the fluctuation of the mean rate of fall or evaporation per month throughout the year. The results, plotted from the Climatological Tables herein, are shown in inches (see the outer columus), and the corresponding metric scale (centimetres) is shown in the two inner columns. The evaporation is not given for Darwin.

At Perth, Adehide, Rrisbane, Melbourne, Hobart, Canberra, Alice Springs, and Coolgardie the results have been obtained from jacketed tanks sunk in the ground. At Sydney and Dubbo sunken tanks without water jackets are used, whilst at Laverton (W.A.) the records are taken from a small portable jacket evaporation dish of 8 inches in diameter.

The distance for any date from the gero line to the curve represento the average number of inches reckoned as per month, of rainfall at that date. Thus, taking the curve for Adelaide in the middle of January, the rain fails on the average at the rate of about three-fourths of an inch per month or, say, at the rate of about 9 inches per year. In the middle of June it falls at the rate of a little over 3 inches per month, or, say, at the rate of about 37 inches per year. At Dubbo, the evaporation is at the rate of nearly I inches fer mont habout the middle of Jamiary, and only about $1 \frac{1}{2}$ inches at the middle of June.

The mean annual rainfall and evaporation at the places indicated are given in the appended table.

MEAN ANSUAL RAINFALL AND JVAPORATION.


MEAS BAROMETRIC PRESSURE.-CAPITAL CITIES.


Explanation.-The lines representing the yearly fuctuations of barometric pressure at the State capital cities are means for long periods, and are plotted from the Climatological Tables herein. The pressures are shown in inches on about $2 \frac{1}{2}$ times the natural scale, and the corresponding pressures in centimetres are also shown in the two inner columns, in which each division represents one millimetre.

Taking the Brisbane graph for purposes of illustration, it will be seen that the mean pressure in the middle of January is about 29.87 inches, and there are maxima in the middle of May and August of about 30.09 inches.

Area affected and period of duration of the Longest Heat Waves when the Maximum Temperature for consecutive 24 hours reached or exceeded $100^{\circ}$. ${ }^{\text {. }}$


DECEMEER, 1942.





8. Evaporation.-(i) General. 'l'be rate and quantity of eraporation in any territory is influenced by the prevailing temperature, and by atmospheric humidity, pressure and movement. In Australia, the question is, perhaps, of more than ordinary importance, since in its drier regions water has often to be consersed in "tanks" and dams. The magnitude of the economic loss by evaporation will be appreciated from the tabular records herein, which show that the yearly amount varies from about 3 I inches at Hobart to more than 100 inches in the central parts of Australia. Over an area of 70 per cent. of the continent, comprising most inland districts and extending to the coast in the North-West and Eucla divisions of Western Australia, during no month of the year does the rainfall exceed the evaporation. The central portion of the continent, comprising 46 per cent. of the total land mass, experiences evaporation more than twice as great as its rainfall; it is noteworthy that the vegetation in this region is characterised by acacia, semi-desert, shrub steppe and porcupine grass. Since the loss by evaporation depends largely on the exposed area, tanks and dams so designed that the surface shall be a minimum are advantageous. Further, the more protected from the direct rays of the sun and from winds by means of suitable tree planting, the less will be the loss by evaporation. These matters are naturally of more than ordinary concern in the drier districts of Australia.
(ii) Monthly Evaporation Curves. The diagraus herein showing the mean montbly evaporation in various parts of Australia disclose how characteristically different are the amounts for the several months in different localities.
9. Rainfall.-(i) General. The rainfall of any region is determined mainly by the direction and route of the prevailing winds, by the varying temperatures of the earth's surface over which the.j blow, and by its physiographical features.

Australia lies within the zones of the south-east trades and prevailing westerly winds. The southern limit of the south-east trade strikes the eastern shores at about $30^{\circ}$ south latitude, and, with very few exceptions, the heaviest rains of the Australian continent are precipitated along the Pacific slopes to the north of that latitude, the varying quantities being more or less regulated by the differences in elevation of the shores and of the chain of mountains from the New South Wales northern border to Tharsday Island, upon which the rain-laden winds blow. The converse effect is exemplified on the north-west coast of Western Australia, where the prevailing winds blowing from the interior of the continent instead of from the ocean, result in the lightest coastal rain in Australia.

The westerly winds, which skirt the southern shores, are responsible for the reliable, generally light to moderate rains enjoyed by the south-western portion of Western Australia, the agricultural areas of South Australia, a great part of Victoria, and the whole of Tasmania.
(ii) Distribution of Rainfall. 'The average annual rainfall map of Australia herein shows that the heaviest yearly falls occur on the north coast of Queensland (up to over 160 inches) and in Western Tasmania (up to 140 inches), while from 50 to over 60 inches are received on parts of the eastern seaboard from Jervis Bay (New South Wales) to the northern part of Cape York Peninsula, also around Darwin (Northern Territory), on the West Kimberley coast, near Cape Leeuwin (Western Anstralia), abont the Australian Alps in eastern Victoria and New Sonth Wales, and on the northeastern highlands in Tasmania. A great part of the interior of the continent, stretching from the far west of New South Wales and the south-west of Qucensland to the vicinity of Shark Bay in Western Australia, has a very low average rainfall of less than 10 inches a year. Between these two regions of heavy and very low rainfall are the extensive areas which experience useful to good rains, and in the southern and eastern parts of which are found the best country and most of the population and primary production.

[^0]4193.-2
(iii) $\dot{F}$ actors Determining Occurrence, Intensity and Seabonal Distribution of Rainfall. Reference has already been made to the frequent rains occurring in the north-eastern coastal districts of Queensland with the prevailing south-east trade winds and to similar rains in the west of Tasmania with the prevailing westerly winds. Other rains in Australia are associated mainly with tropiaal and southern depressions.

The former chiefly affect the northern, eastern, and to some extent the central parts of the continent and operate in an irregular manner during the warmer half of the year, but principally from December to March. They vary considerably in activity and soope from year to year, occasionally developing into severe storms off the east and north-weat ooasts. Tropical rainstorms sometimes cover an extensive area, half of the continent on occasions receiving moderate to very heavy falls during a period of a few days. Rain is also experienced, with some regularity, with thunderstorms in tropical areas, specially near the coast. All these tropical rains, however, favour mostly the northern and eastern parts of the area referred to; the other parts further inland receive lighter, less frequent and less reliable rainfall. With the exception of districts near the east coast, where some rain falls in all seasons, the tropical parts of the continent receive useful rains only on rare occasions from May to September.

The southern depressions are most active in the winter-June to August-and early spring months. The rains associated with them are fairly reliable and frequent over Southern Australia and Tasmania, and provide during that period the principal factor in the successful growing of wheat. These depressions also operate with varying activity during the remainder of the year, but the accompanying rains are usually lighter. The southern rains favour chiefly the south-west of Western Australia, the agricultural districts of South Australia, Victoria, Tasmania, and the soutbern parts of New South Wales. They sometimes extend into the drier regions of the interior, but only infrequently and with irregular rains.

The map showing mean monthly distribution of rainfall over Australia gives information on the amount and occurrence of rain in graphic form.
(iv) Wettest and Driest Regions. The wettest known part of Australia is on the north-east coast of Queensland, between Port Douglas and Cardwell, where Deeral on the north coast-line has an average annual rainfall of 175.00 inches and Tully on the Tully River 174.65 inches. In addition, three stations situated on, or adjacent to, the Johnstone and Russel Rivers have an average annual rainfall of between 143 and 175 inches. The maximum and minimum falls there are:-Deeral, 257.58 in 1939 and 109.74 inches in 1943, or a range of 147.84 inches; Tully, 234.37 in 1936 and 104.98 inches in 1943, or a range of 129.39 inches; Goondi, 241.53 in 1894 and 67.88 inohes in 1915, or a range of 173.65 inches; Innisfail, 211.24 in 1894 and 69.87 inches in 1902, or a range of 141.37 inches; Harvey Creek, 254.77 in 1921 and 80.47 inches in 1902, or a range of 174.30 inches.

On four occasions more than 200 inches have been recorded at Goondi, the last of these being in 1910, when 204.82 inches were registered. The records at this station cover a period of 58 years.

In eighteen years of record Tully has exceeded 200 inches on seren occasions, whilst in a record of 28 complete years Harvey's Creek has four times exceeded this figure, and in a space of ten years Japoonvale has exceeded it twice. At Tully 234.37 inches were recorded during 1936 and at Harvey Creek the total for I92I was $254 \cdot 77$ inches. At the South Johnstone Sugar Experiment Station 202.52 inches were recorded in 1921 , while 236.33 inches were recorded at Japoonvale in 1936.

In Tasmania the wettest part is in the West Coast region, the average annual rainfall at Lake Margaret being 144 inches, with a maximum of 175.12 inches in 1924.

The driest known part of the continent is in the Lake Eyre district in South Australia (the only part of the continent below sea level), where the annual average is only 5 inches, and where the fall rarely exceeds no inches for the twelve months.

The inland diatricts of Western Australia were at one time regarded as the driest part of Australia, but authentic observations in recent years over most settled districts in the east of that State show that the annual average is about 10 inches.
(s) Quantities and Distribulion of Rainfall. . The general distribution is best seen from the rainfall map herein. which shors the areas subject to average annual rainfalls lying hetween certain limits. The proportions of the total area of each State and of Australia as a whole enjoying varying quantities of rainfall determined from the latest available information are shown in the following table:-
aVERAGE ANNUAL Rainfall distribution.


Referriug first to the capital cities the records of which are given in the next table, it will be seen that Sydney, with a normal rainfall of 46.46 inches, occupies the chief place: Brisbane, Perth, Melbourne, Hobart, Canberra and Adelaide follow in that order, Adeiaide with $21 . i r$ inches being the driest. The extrome range from the wettest to the driest year is greatest at Brisbane ( 72.09 inches) and least at Adelaide (19.49 inches).

In order to show how the rainfall is distributed throughout the year in various parts of the continent, average figures for the various climatological districts have been selected. (See map on p. 38). The figures for Northern Rivers, District 14, show that nearly the whole of the rainfall occurs there in the summer months, while little or none falls in the middle of the year. The figures for the Central Coast, south-west of Western Australia (District 9), are the reverse for, while the summer months are dry, the winter ones are very wet. In the districts containing Melbourne and Hobart the rain is fairly well distributed throughout the twelve months, with a maximum in October for both districts. In Queensland, the heaviest rains fall in the summer months, but good averages are also maintained during the other seasons in eastern parts.

On the coast of New South Wales, the first half of the year is the wettest, with heaviest falls in the autumn; the averages during the last six months are fair, and moderately uniform. Generally it may be said that approximately one-third of the area of the continent, principally in the eastern and northern parts, enjoys an annual average rainfall of from 20 to 50 inches or more, the remaining two-thirds averaging from 5 to 20 inches.
(vi) Curves of Rainfall and Evaporation. The relative amounts of rainfall and evaporation at different times through the year are clearly indicated in the graphs herein. Inspection thereof will show how large is the evaporation when water is fully exposed to the direct rays of the sun and to wind.
(vii) Tables of Rainfall. The table of rainfall for a fairly long period of years for each of the various Australian capitals affords information as to the variability of the fall in successive years, and the list of the more remarkable falls furnishes information as to what may be expected on particular occasions.

RAINFALL: AUSTRALIAN CAPITAL CITIES.

(a) Commonwealth Forestry Bureau; records in previous issues were for the station at Acton which closed down in 1939.
10. Remarkable Falls of Rain.-The following are the most remarkable falls of rain in the various States and Territories which have occurred within a period of twenty-four hours. For other very heary falls at varions localities reference may be made to Official Year Book No. 14, pp. 60-64, No. 22, pp. $46-4^{8}$ and No. 29, pp. 43, 44 and 51 :-

HEAVY RAINFALLS : NEW SOUTH WALES, UP T0 1944, INCLUSIVE.


HEAVY RAINFALLS : QUEENSLAND, UP TO 1944, INCLUSIVE.

| Name of Town or Locality. | Date. | Amnt | me of Town or Locality. | Date. | Amnt |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | in. |  |  | n. |
| Babinda (Cairns) | 2 Mar., 1935 | 24.14 | Mackay | 21 Jan., 1918a | 24.70 |
| Buderim Mountain | I J Jan., 1898 : | 26.20, | Macnade Mill | 6 , 1901 | 23.33 |
| Crohanhurst |  |  | Plane Creek |  |  |
| (Blackall Range) | 2 Feb., 1893 | 35.71 | (Mackay) | 26 Feb., 1913 | 27.73 |
| Deeral | 2 Mar., 1935 | 27.60 | Port Douglas | r Apr., 1911 | 3 L .53 |
| Goondi | 30 Jan., 1913 | 24.10 | Tully Mill | 12 Feb., 1927 | 23 |
| Harvey Craek | 3 ", 1911 | 27.75 | Woodlands (Yepp'n) | 3 Jan., 1893 | 23.07 |
| Kuranda (Cairns) | 2 Apr., 1911 | 28.80 | Yarrabah | 2 Apr., 1911 | 30.65 |

HEAVY RAINFALLS: WESTERN AUSTRALIA, UP TO 1944, INCLUSIVE.


HEAVY RAINFALLS : NORTHERN TERRITORY, UP TO 1944, INCLUSIVE.

| Name of Town or Locality. | Date. | Amint. | ame of Town or Locality: | Date. | Amm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bathurst Island |  |  |  |  | In |
| Mission | 7 Apr., 1925 | 11.85 | Cape Don | 13 Jan., 1934 | 13.58 |
| Birrimbah | 6 Mar., 1935 | 16.50 | Darwin | 7 Dec., 1915 | 1.6 |
| Borroloola | 14.01899 | 14.00 | Groote Eylandt | 25 Mar., 1940 | 11.7 |
| Brock's Creek | 24 Dec., 1915 | 14.33 | Timber Creek | 5 Feb., 1942 | 13.6 |

HEAVY RAINFALLS : SOUTH AUSTRALIA, UP T0 1944, INCLUSIVE.


HEAVY RAINFALLS : VICTORIA, UP TO 1944, INCLUSIVE.


HEAVY RAINFALLS: TASMANIA, UP TO 1944, INCLUSIVE.


HEAVY RAINFALLS: AUSTRALIAN CAPITAL TERRITORY, UP TO 1944,

II. Snowfall.-Light snow has been known to fall occasionally as far north as latitude $3 I^{\circ}$ S., and from the western to the eastern shores of the continent. During exceptional seasons, it has fallen simultaneously orer two-thirds of New South Wales, and has extended at times along the whole of the Great Dividing Range, from its southern extremity in Victoria as far north as Toowoomba in Queensland. During the winter, for several months, snow covers the ground to a great extent on the Australian Alps, where also the temperature falls below zero Fahrenheit during the night. In the ravines around Mt. Kosciusko and similar localities the snow never entirely disappears after a severe winter.
12. Hail.-Hail falls most frequently along the southern shores of the continent in the winter, and orer eastern Australia during the summer months. The size of the hailstones generally increases with distance from the coast. A summer rarely passes without some station experjencing a fall of stones exceeding in size an ordinary hen-egg, and many riddled sheets of light-gauge galvanized iron bear evidence of the weight and penetrating power of the stones.

The hailstones occur most frequently when the barometric readings indicate a flat and unstable condition of pressure. Tornadoes or tornadic tendencies are almost invariably accompanied by hail, and on the east coast the clouds from which the stones fall are frequently of a remarkable sepia-coloured tint.
13. Barometric Pressures.-The mean annual barometric pressure (corrected to sea level and standard gravity) in Australia varies from 29.80 inches on the north coast to 29.92 inches over the central and 30.03 inches in the southeru parts of the continent. In January, the mean pressure ranges from 29.70 inches in the northern and central areas to 29.95 inches in the southern. The July mean pressure ranges from 29.90 inches at Darwin to 30.11 inches at Alice Springs. Barometer readings corrected to mean sea level and standard gravity have, under anticyclonic conditions in the interior of the continent, ranged as high as 30.78 inches (at Kalgoorlie on 28 th July, 1901) and have fallen as low as 27.55 inches. This lowest record was registered at Mackay during a tropical hurricane on 21st January, 1918. An almost equally abnormal reading of 27.88 inches was recorded at Innisfail during a similar storm on 1oth March, 1918. The mean barometric pressure for the Australian capitals is shown on the graphs herein.
14. Wind.-(i) Trade Winds. The two distinctive wind currents in Australia are as previously stated, the south-east trade and the prevailing westerly winds. As the belt of the earth's atmosphere in which they blow apparently follows the sun's ecliptio path north and south of the equator, so the area of the continent affected by these winds varies at different seasons of the year. During the summer months the anticyclonic belt travels in-very high latitudes, thereby bringing the south-east trade winds as far south as $30^{\circ}$ south latitude. The prevailing westerly winds retreat a considerable distance to the south of Australia, and are rarely in evidence in the hot months. When the sun passes to the north of the equator, the south-east trade winds follow it, and only operate to the north of the tropics for the greater part of the winter. The westerly winds come into lower latitudes during the same period of the year. They sweep across the southern areas of the continent from the Leeuwin to Cape Howe, and during some seasons are remarkably persistent and strong, and occasionally penetrate to almost tropical latitudes.
(ii) North-west Monsoon. As the belt of south-east trade winds retreats southward during the summer, it is replaced in the north and north-west of Australia first by a sequence of light variable winds and then by the north-west monsoon. In Australia, the north-west monsoon has not the persistence nor regularity of the Indian south-west monsoon but is sufficiently characteristic for the summer in the north of Australia to be called the "North-west Season". In Central and Eastern Queensland, the north-west monsoon in the summer has comparatively little effect and the trade winds, albeit
weakened, are still the dominant winds. With the migration of the sun northward in the autumn, the north-west monsoon is itself replaced first by light variable winds and then by the trade winds.
(iii) Land and Sea Breezes. The prevailing winds next in order of importance are the land and sea breezes. On the east coast the sea breezes which come in from the north-east, when in full force, frequently rench the relocity of a gale during the afternoon in the summer months, the maximum hourly velocity; ordinarily attained about 3 p.m., not infrequently attaining a rate of 35 to 40 miles per hour. This wind, although strong, is usually shallow in depth, and does not ordinarily penetrate more than 9 or 12 miles inland.

The land breezes on the east coast blow out from a westerly direction during the night.
On the western shores of the continent the directions are reversed. The sea breezes come in from the south-west, and the land breezes blow out from the north-east.
(iv) Inland Winds. Inland, the direction of the prevailing winds is largely regulated by the seasonal changes of pressure, so disposed as to cause the winds to radiate spirally outward from the centre of the continent during the winter months, and to circulate spirally from the seaboard to the centre of Australia during the summer months.
(v) Prevailing Direction at the Capital Cities. In Canberra at 9 a.m. the air is usually calm, particularly during the winter months, but such winds as do oceur are predominantly north-westerly, though a proportion of south-easterly winds occur during the autumn. At 3 p.m. the predominant wind is north-westerly.

In Perth at 9 a.m. north-east to south-east winds prevail from September to May, while from May to September north-east to north winds predominate. At 3 p.m. the prevailing wind is south-west to south during the warmer months and between north-west and south at other times.

In Adelaide at 9 a.m., the predominant wind is north-easterly from May to August, but during the rest of the year no particular direction is outstanding. At 3 p.m. the predominant wind is south-westerly for all months except June, July and August. Throughout the year winds with an easterly component are rare in the afternoon.

In Brisbane at 9 a.m. the most frequent winds during the colder two-thirds of the year come from the south or south-west, while in the warmer months south to south-east winds are more usual. At 3 p.m. winds with an easterly component predominate, especially north-easterlies during the warmer half of the year.

In Sydney at 9 a.m., by far the most prevailing wind is a westerly, particularly during the colder two-thirds of the year. At 3 p.m. during the warmer two-thirds of the year. winds with an easterly component are most frequent with a smaller proportion of southerlies and westerlies during the winter months.

In Melbourne at 9 a.m., northerlies are the most frequent winds during the period February to October with a moderate proportion of westerlies in the spring. During the summer months, winds with a southerly component are in evidence to a slightly greater degree than any others. At 3 p.m. southerly winds prevail during the warmer two-thirds of the year with the frequency of northerlies increasing during the colder months.

In Hobart at 9 a.m. the most favoured directions are from the north-west and north with a good proportion of south-easterlies showing up at 3 p.m. during the warmer months.
15. Cyclones and Storms.-The "elements" in Australia are ordinarily peaceful, and while destructive cyclones have visited various parts, more especially coastal areas, such visitations are rare, and may be properly described as erratic.

During the winter months, the southern shores of the continent are subject to cyclonic storms, erolved from the V-shaped depressions of the southern low-pressure belt. They are felt most severely over the south-western parts of Western Australia, to the south-east of South Australia, in Bass Strait, including the coast-line of Victoria, and on the west coast of Tasmania. Apparently the more violent wind pressures from these cyclones are experienced in their northern half, or in that part of them which has a north-westerly to a south-westerly circulation.

The north-east coast of Queensland is occasionally visited by hurricanes from the north-east tropics. During the first four months of the year, these hurricanes appear to have their origin in the neighbourhood of the South Pacific Islands, their path being a parabolic curve first to the south-west and finally towards the south-east. Only a small percentage, however, reach Australia, the majority recurving in their path to the east of New Caledonia.

Very severe cyclones, locally known as "willy willies," are peculiar to the north. west coast of Western Australia from the months of November to April, inclusive. They usually originate over the ocean to the north or north-west of Australia, and travel in a south-westerly direction with continually increasing force, displaying their greatest energy near Cossack and Onslow, between latitudes $20^{\circ}$ and $22^{\circ}$ South. The winds in these storms, like those from the north-east tropics, are very violent and destructive, and cause great havoc amongst the pearl-fishers. The greatest velocities are usually to be found in the south-eastern quadrant of the cyclones, with north-east to east winds. After leaving the north-west coast, these storms either travel southwards, following the coast-line, or cross the continent to the Great Australian Bight. When they take the latter course, their track is marked by torrential rains, as much as 29.4 I inches, for example, being recorded in 24 hours at Whim Creek from one such occurrence. Falls of ro inches and over have frequently been recorded in the northern interior of Western Australia from similar storms.

Some further notes on severe cyclones and on "southerly bursters ", a characteristic feature of the eastern part of Australia, appear in previous issues of the Official Year Book (see No. 6, pp. 84-86), and a special article dealing with "Australian Hurricanes and Related Storms" appears in Official Year Book No. r6, pp. 80-84.
16. Influences affecting Australian Climate.-(i) General. Australian history doea not corer a sufficient period, nor is the country sufficiently occupied, to ascertain whether or not the advance of settlement has materially affected the climate as a whole. Local changes have, however, taken place, a fact which suggests that settlement and the treatment of the land have a distinct effect on local conditions. For example, low-lying lands on the north coast of New South Wales, which originally were seldom subject to frosts, have, with the denudation of the surrounding hills from forests, experienced annual visitations, the probable explanation being that through the absence of trees the cold air of the highlands now flows unchecked and untempered down the sides of the hills to the valleys and lower lands.
(ii) Influence of Forest on Climate. As already indicated, forests doubtless exercise a great influence on local climate, and hence, to the extent that forestal undertakings will allow, the weather can be controlled by human agency. The direct action of forests is an equalizing one; thus, especially in equatorial regions, and during the warmest portion of the year, they considerably reduce the mean temperature of the air. They also reduce the diurnal extremes of shade temperatures by altering the extent of radiating surface by evaporation, and by checking the movement of air, and while decreasing evaporation from the ground, they increase the relative humidity. Vegetation greatly diminishes the rate of flow-off of rain and the washing away of surface soil, and when a region is protected by trees, a steadier water supply is ensured, and the rainfall is better conserved. In regions of snowfall, the supply of water to rivers is similarly regulated, and without this and the sheltering influence of ravines and "gullies," watercourses supplied mainly by melting snow would be subject to alternative periods of flooding and dryness. This is borne out in the case of the inland rivers, the River Murray, for example, which has never been known to become dry, deriving its steadiness of flow mainly through the causes indicated.
(iii) Direct Influence of Forests on Rainfall. Whether forests have a direct influence on rainfall is a debatable question, some authorities alleging that precipitation is undoubtedly induced by forests, while others take the opposite view.

Sufficient evidence exists, however, to prove that, even if the rainfall has not increased, the beneficial climatic effect of forest lands more than warrants their protection and extension. Rapid rate of evaporation, induced by both hot and cold winds, injures crops and makes life uncomfortable on the plains, and, while it may be doubted that dhe forest aids in increasing precipitation, it must be admitted that it does check winds and the rapid evaporation due to them. Trees as wind-breaks have been successfully planted in central parts of the United States of America, and there is no reason why similar experiments should not be successful in many parts of the treeless interior of Australia. The belts should be planted at right angles to the direction of the prevailing parching winds, and if not more than half a mile apart will afford shelter to the enclosed areas.
17. Rainfall and Temperatures, Various Cities.-The Official Year Book No. 34 , p. 28, shows rainfall and temperature for various important cities throughout the world, and for the Australian capitals.
18. Climatological Tables.-The averages and extremes for a number of climatological elements have been determined from long series of observations at the Australian capitals up to and including the year 1942 (Canberra to 1944). These are given in the following tables :-

CLIMATOLOGICAL DATA : CANBERRA, AUSTRALIAN CAPITAL TERRITORY.
Lat. $35^{\circ}$ 18' S., Long. $149^{\circ}$ o6' E. Heioht above M.S.L. i,go6 Ft.
Barometer, Wind, Evaporation, Lightnina, Clouds and Clear Days.


Temperature and Sunshine.

(e) $19 / 29,9 / 37$ and $27 / 43$.
(b) $8 / 38$ and $18 / 43$.
(c) $22 / 3 \mathrm{I}$ and $23 / 3$ I.

## (f) $8 / 38$ and $18 / 43$.

(g) Total for year.
(d) $3 / 27,28 / 30$ and $30 / 30$.

Humidity, Rainfall and Fog.


## CLIMATOLOGICAI. DATA : PERTH, WESTERN AUSTRALIA.

Lat. $3 \mathrm{I}^{\circ} 57^{\prime}$ S., Long. $115^{\circ} 5 \mathrm{I}^{\prime}$ E. Height above M.S.L. 197 Ft.
Barometer, Wind, Evaporation, Iightnina, Clouds and Clear Days.

| Month. |  | Wind. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mean Speed (miles | Highest Mean Speed in One Day | Max. <br> Gust <br> Speed | Prevailing Direction. |  |  |  |  |  |
|  |  | hour). | hour). | $\begin{gathered} \text { per } \\ \text { hour). } \end{gathered}$ | $9 \mathrm{a} . \mathrm{m}$. | 3 p.m. |  |  |  |  |
| No. of years observations. | 58 | 44 | 44 | 30 | 43 | 43 | 44 | 46 | 35 | 46 |
| January | 29.905 | 14.6 | 33.2 27/98 | 49. | ESE | SSW | 10.35 | 1.9 | 2.9 | 14.2 |
| February | 29.925 | 14.0 | 27.1 6/08 | 50 | ESIS | SSW | 8.64 | 1.5 | 3.0 | 12.5 |
| March | 29.983 | 13.1 | $27.15 / 13$ | 54 | ESE | SSW | 7.50 | 1.7 | $3 \cdot 5$ | 12.1 |
| April. | 30.075 | 11.0 | 39.8 25/00 | 61 | E | SSW | 4.72 | 1.6 | 4.2 | 8.5 |
| May | 30.067 | 10.7 | $34.424 / 32$ | 73 | NE | SW | 2.74 | 2.4 | 5.4 | 5.7 |
| June | 30.060 | 11.0 | $38.157 / 27$ | 80 | NNE | WNW | 1.75 | 2.3 | 5.9 | 4.1 |
| July .- | 30.092 | II. 3 | 42.3 20/26 | 73 | NNE | W | 1.71 | 2.0 | 5.6 | 5.1 |
| August | 30.083 | 11.9 | 40.3 15/03 | 72 | NNE | WSW | 2.35 | 1.6 | 5.6 | 5.5 |
| September | 30.065 | 12. | 36.0 I1/05 | 75 | NE | WSW | 3.40 | 1.2 | 4.9 | 6.4 |
| October | 30.032 | 12.9 | 33.7 6/16 | 61 | SE | SW | $5 \cdot 34$ | 1.0 | 4.9 | 6.8 |
| November | 29.997 | 13.7 | $32.418 / 97$ | 54 | SE | SW | 7.64 | 1.5 | 3.9 | 8.5 |
| December | 29.927 | 14.3 | 32.3 6/22. | 58 | SE | SSW | 9.77 | 1.8 | 3.2 | 12 |
| (Totals.. | - | - |  |  | $\bar{\square}$ | $\vec{W}$ | 65.91 | 20.5 | - | 102.2 |
| Year $\left\{\begin{array}{l}\text { Averages } \\ \text { Extremes }\end{array}\right.$ | 30.017 | 12.6 | 42.3 20/7/26 | $\overline{80}$ | E | SW | - | - | 4.4 | 二 |

Temperature and Sunshine.

(a) 2/1910 and 12/1920. (b) Total for year.

Humidity, Rainfall and Fog.

(a) Various years.
(b) 1886 and 1924 .
(c) Various months in various years.

## CLIMATOLOGICAL DATA : ADELAIDE, SOUTH AUSTRALIA.

Lat. $34^{\circ} 56^{\prime}$ S., Long. $138^{\circ} 35^{\prime}$ E. Heioht $\Delta b$ beve M.S.L. 140 Ft.
Barometer, Wind, Evaporation, Liahtnina, Clouds and Clear Days.

(a) Figures previously published estimated from Cup Anemographs in use prior to 1917.
(b) $10 / 4 / 96$ and $31 / 8 / 97$.

Temperature and Sunshine.

| Munth. |  | Mean Tempera-ture (Fahr.). |  | Extreme Shade Temperature (Fahr.). |  |  | $\begin{gathered} \text { Extreme } \\ \text { Temperature (Fahr.). } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{cc} \text { Mean Mean } \\ \text { Max. Min. } \end{array}$ | Mean | Highest. | Lowest. |  | Highest <br> in Sun. | Lowest on Grass. |  |
| No. of yrs. uver which observations extend. |  | 8686 | 86 | 86 | 86 | 86 | 53 | 82 | 61 |
| January |  | $8 5 . 9 \longdiv { 6 1 . 4 }$ | $\overline{73.7}$ | 117.7 12/39 | 45.1 $21 / 84$ | 72.6 | $180.0 \times 8 / 82$ | 36.5 14/79 | 307.0 |
| Februars |  | 85.961 .8 | 73.9 | $113.612 / 99$ | $45.5123 / 18$ | 68.1 | $170.510 / 00$ | 35.8 23/26 | 262.8 |
| March |  | 81.0 59.0 | 70.0 | $110.59 / 34$ | 43.9 21/33 | 66.6 | $174.017 / 83$ | 32.1 $21 / 33$ | 240:6 |
| April |  | 73.3 54.6 | 63.9 | 98.6 5/38 | $39.615 / 59$ | 59.0 | $155.0 \quad 1 / 83$ | $30.216 / 17$ | 179.8 |
| May |  | 65.9 50.3 | 58.1 | $89.54 / 21$ | 36.9 (a) | 52.6 | $148.212 / 79$ | 25.6 19/28 | 148.5 |
| June |  | 60.5 - $4^{6.7}$ | 53.6 | $76.023 / 65$ | 32.5 27/76 | 43.5 | $133.818 / 79$ | $22.912 / 13$ | 122.9 |
| Juy |  | 59.1 , 44.8 | 52.9 | $74.011 / 06$ | $32.024 / 08$ | 42.0 | $134.5 \quad 26 / 90$ | $22.130 / 29$ | 135.4 |
| August |  | $62.0 \mid 45.9$ | 53.9 | $85.031 / 11$ | $32.317 / 59$ | 52.7 | $140.031 / 92$ | $22.811 / 29$ | 164.0 |
| September |  | 66.4 47.9 | 57.1 | 90.7 23/82 | $32.74 / 58$ | 58.0 | $160.523 / 82$ | 25.0 25/27 | 184.9 |
| October |  | 72.5151 .4 | 61.9 | $102.921 / 22$ | $36.0-157$ | 66.9 | $162.030 / 21$ | 27.8 (b) | 226.7 |
| November |  | 78.6 <br> 85.3 | 66.9 | $113.521 / 65$ | 40.8 2/09 | 72.7 | $166.920 / 78$ | $31.5 \quad 2 / 09$ | 261.5 |
| December |  | 83.258 | 71.1 | 114.6 29/3I | 43.0 (c) | 71.6 | 175.7_7/99 | $32.5 \quad 4 / 84$ | 298.2 |
| $\text { Year }\left\{\begin{array}{l} A \\ \mathrm{E} \end{array}\right\}$ | ges | $73.8,53.2$ | 63.0 | 117.7 <br> $-12 / 1 / 39$ | $\begin{aligned} & 32.0 \\ & \quad 24 / 7 / 08 \\ & \hline \end{aligned}$ | 85.7 | 180.0 $18 / 1 / 82$ | 22.1 $30 / 7 / 29$ | 2532.3d |
| (a) 26/1895 and 24/1904. |  |  |  | and $4 / 1931$. | (c) 1 | \% | 4/1906. | (d) Total | ear. |

Homidity, Rainfall and Fog.


[^1]
## CLIMATOLOGICAL DATA : BRISBANE, QUEENSLAND.

Latr. $27^{\circ} 28^{\prime}$ S., Long. $153^{\circ} 2^{\prime}$ E. Hetaht above M.S.L. I34 Ft.
Barometer, Wind, Evaporation, Lightning, Clouds and Clear Days.


Temperature and Sunshine.

| Month. |  |  | Mean Temperature (Fahr.). |  |  | Extreme Shade Temperature (Fahr.). |  |  | Extreme Temperature (Fahr.). |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mrean Max | $\begin{aligned} & \text { Mean } \\ & \text { Min. } \end{aligned}$ | Mean | Highest. | Lowest. |  | Highest. in Sun. | Lowest on Grass. |  |
| No. of yrs. over which observations extend. |  |  | 56 | 56 | 56 | 56 | 56 | 56 | 48 | 56 | 34 |
| January |  |  | 85.4 | 69.1 | 77.3 | 109.8 26/40 | 58.8 $4 / 93$ | 51.0 | $169.0 \quad 2 / 37$ | $49.9 \quad 4 / 93$ | 232.8 |
| February |  |  | 84.4 | 68.6 | 76.5 | 105.721/25 | $58.5123 / 31$ | 47.2 | $165.26 / 10$ | 49.1 $22 / 3 \mathrm{I}$ | 206.9 |
| March |  |  | 82.3 | 66.4 | 74.4 | 99.4 5/19 | $52.429 / 13$ | 47.0 | $162.56 / 39$ | 45.4 29/13 | 213.8 |
| April |  |  | 78.9 | 61.5 | 70.2 | 95.2 (a) | $44.4 \quad 25 / 25$ | 50.8 | 153.8 II/ 16 | 36.7 24/25 | 211.2 |
| May |  |  | 73.6 | 55.6 | 64.6 | 90.3 21/23 | 41.3 24/99 | 49.0 | $147.01 / 10$ | 29.8 8/97 | 203.7 |
| June |  |  | 69.3 | 51.2 | 60.3 | 88.9 19/18 | 36.3 29/08 | 52.6 | $136.0 \quad 3 / 15$ | 25.4 23/88 | 186.8 |
| July |  |  | 68.5 | 48.8 | 58.6 | 83.4 28/98 | 36.1 (b) | 47.3 | 146.1 20/15 | $23.911 / 90$ | 212.7 |
| August |  |  | 71.2 | 50.0 | 60.6 | 88.5 25/28 | $\begin{array}{ll}37.4 & 6 / 87\end{array}$ | 5 I .1 | $141.920 / 17$ | 27.1 $9 / 99$ | 241.4 |
| September |  |  | 75.6 | 54.8 | 65.2 | $95.216 / 12$ | $40.71 / 96$ | 54.5 | $155.526 / 03$ | 30.4 1/89 | 247.4 |
| Qctober |  |  | 79.4 | 60.1 | 69.8 | 101.4 18/93 | $43.3 \quad 3 / 99$ | $58 . \mathrm{r}$ | $157.431 / 18$ | $34.9 \quad 8 / 89$ | 257.5 |
| November |  |  | 82.4 | 64.3 | 73.4 | 106.1 18/13 | 48.5 2/05 | 57.6 | $162.3 \quad 7 / 89$ | 38.8 1/05 | 244.0 |
| December |  |  | 84.7 | 67.4 | 76.1 | 105.9 26/93 | $56.413 / 12$ | 49.5 | 162.1 $26 / 37$ | 49.1 3/94 | 252.5 |
| Year $\left\{\begin{array}{l}\text { Ave } \\ \text { Ext }\end{array}\right.$ | ges | - | 778.0 | 59.8 | 68.9 | 109.8 $26 / 5 / 40$ | 36.1 (c) | 73.7 | $\begin{array}{r} 169.0 \\ 2 / 1 / 37 \\ \hline \end{array}$ | $\begin{aligned} & 23.9 \\ & 11 / 7 / 90 \end{aligned}$ | 2710.78 |
| (a) 9/土896 and 5/1903. |  |  |  | (b) $12 / 1894$ and $2 / 1896$ |  |  | (c) 12/7/94 and $2 / 7 / 96$. |  |  | (d) Total for year. |  |

Humidity, Ratnfall and Fog.

(a) $1862,1869,1880$.
(b) Various months in varlous years.
(c) $55 / 1876$ and $16 / 588 g$.

## ClImatological data ：sydney，new south wales．

Lat． $33^{\circ} 52^{\prime}$ S．，Lono． $151^{\circ} 12^{\prime}$ E．Height above M．S．L． 138 Ft． Barometer，Wind，Evaporation，Lightning，Clouds and Clear Days．


Temperature and Sunshine．

（a）Total for year．
Humidity，Rainfall and Fog．

| － | Vapour Pres－ | Rel． | $\begin{aligned} & \text { Fum. } \\ & 9 \mathrm{a} . \mathrm{m} . \end{aligned}$ | (\%) | Rainfall（inches）． |  |  |  |  | Fog． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Month． | $\left\lvert\, \begin{gathered} \text { sure } \\ \text { (inches). } \\ \overline{\text { Menn }} \\ 9 \text { a.m. } \end{gathered}\right.$ | $\dot{E}$ |  |  | 总 |  |  | $\begin{aligned} & \text { 良 } \\ & \text { 㤩 } \\ & \text { 㤩㤩 } \end{aligned}$ |  |  |
| No．of yrg．over which observations extend． | 67 | 67 | 67 | 67 | 84 | 84 | 84 | 84 | 84 | 22 |
| Janlary $\cdots$ | 0.541 | 66 | 78 | 58 | 3.56 | 14 | 15.261911 | 0.251932 | $7.0813 / 11$ | 0.4 |
| February | 0.560 | 71 | 8 8 | 60 | 4.07 | 13 | $18.56 \quad 1873$ | 0.121939 | $8.9025 / 73$ | 0.9 |
| March | 0.532 | 73 | 85 | 63 | 5.03 | 14 | 20.521942 | $0.42 \quad 1876$ | $11.0528 / 42$ | 2.0 |
| April | 0.442 | 75 | 87 | 63 | 5.33 | 14 | 24.49 r86r | 0.061868 | 7.52 29／60 | 3.3 |
| May | 0.359 | 77 | 90 | 63 | 4.92 | 14 | 23.031919 | 0.181860 | $8.3628 / 89$ | 4.5 |
| Junc | 0.301 | 77 | 89 | 68 | 4.67 | 13 | 16.301885 | 0.191904 | $5.1716 / 84$ | $4 \cdot 3$ |
| July | 0.276 | 76 | 88 | 63 | 4.66 | 12 | 13.211900 | 0．12 1862 | 7．So 7／31 | 3.4 |
| August | 0.288 | 71 | 84 | 56 | 2.90 | 11 | 14.891899 | 0．04 1885 | 5.33 2／60 | 2.8 |
| September | 0.330 | 65 | 79 | 49 | 2.82 | 12 | 14.041879 | 0．08 1882 | 5.69 10／79 | 0.9 |
| October | 0.383 | 63 | 77 | 42 | 2.87 | 12 | 11.141916 | 0．21 1867 | $6.3713 / 02$ | 0.7 |
| November | 0.444 | 63 | 79 | 44 | 2.80 | 12 | 9.881865 | 0.071915 | $4.2319 / 00$ | 0.7 |
| Necember | 0.503 | 64 | 77 | 52 | 2.96 | 13 | 15.821920 | $0.23 \quad 1913$ | $4.7513 / 10$ | 0.4 |
| $\text { Year }\left\{\begin{array}{l} \text { Totals } \\ \text { Averages } \\ \text { Extremes } \end{array}\right.$ | 0.402 | $\overline{70}$ | 二 | $\bar{\square}$ | 46.59 | 154 - |  | ${ }_{0.04}^{\text {－}}$ | $\begin{gathered} \square \\ 11.05 \\ 28 / 3 / 42 \\ \hline \end{gathered}$ | 24.3 |

## CLIMATOLOGICAL DATA : MELBOURNE, VICTORIA.

Lat. $37^{\circ} 49^{\prime}$ S., Lono. $144^{\circ} 58^{\prime}$ E. Height above M.S.L. if Ft.
Barometer, Wind, Evaporation, Lightnina, Clouds and Clear Days.

No. of years
observations.

| $\begin{array}{ll}\text { January } & \text {.. } \\ \text { February } & \ldots \\ \text { March } & . .\end{array}$ |
| :--- | :--- |


| March | .. |
| :--- | :--- |
| April.. | $\because$ |
| May .. | .. |


| June.. | $\cdots$ |
| :--- | :--- |
| July | $\cdots$ |
| August | $\cdots$ |


| September | $\cdots$ |
| :--- | :--- |
| October |  |

$\begin{array}{cccc}\text { Deveraber } & \cdots & 29.952 & 29.900 \\ \text { Totals } & \text {.. } & - & \text { 1 }\end{array}$
Year $\left\{\begin{array}{l|c}\text { Totals .. } \\ \text { Averages } \\ \text { Extremes } & 30.013 \\ & =\end{array}\right.$
(a) Revised for 30 years-1912 and 1914-1942 inclusive.

Wind.
93 feet above surface.


(b) $22 / 3 \mathrm{r}$ and $3 / 4 \mathrm{I}$.

Temperature and Sunshine.


Humidity, Rainfall and Foo.


## ClImatological data ：hobart，TaSmania．

Lat． $42^{\circ} 53^{\prime}$ S．，Long． $147^{\circ} 20^{\prime}$ E．Height above M．S．L． 177 Ft． Barometer，Wind，Evaporation，Liahtnina，Clouds and Clear Days．

| Month． |  | Anemometer 40 find above surface． |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mean <br> Speed （miles per hour）． | Highest Mean Speed in One Day （miles per hour）． | Max． Gust <br> Speed <br> （miles <br> per <br> hour）． | $\frac{\begin{array}{c} \text { Prev } \\ \text { Dire } \end{array}}{9 \text { n.m. }}$ | ling ion． $3 \text { p.m. }$ |  |  |  |  |
| No．of years observations． | 58 | 32 | 32 | 58 | 37 | 37 | 32 | 35 | 80 | 36 |
| January | 29.822 | 8.0 | 21 30／16 | 76 | N to NWV | SE | 4.813 | 0.9 | 6.0 | 2.3 |
| February | 29.914 | 7.1 | 25 4／27 | 63 | N to NW | SE | 3.696 | 1. | 6.0 | 2.3 |
| March | 29.951 | 6.7 | 21 13／38 | 68 | N to NW | SE | 3.106 | 1. | 5.9 | 2.4 |
| April | 29.973 | 6.7 | 22 27／26 | 74 | N to NW | SE \＆NW | 1.999 | 0.7 | 6.2 | 1.7 |
| May | 29.997 | 6.4 | $20 \quad 20 / 36$ | 70 | N to NW | N to NW | 1.382 | 0.4 | 6.1 | 2.3 |
| June | 29.968 | 6.2 | 24 27／20 | 61 | NNW to NW | N to NW | 0.907 | 0.4 | 6.1 | 2.3 |
| July | 29.940 | 6.5 | 21 19／35 | 78 | NNW to NW | N to NW | 0.945 | 0.4 | 5.9 | 2.2 |
| August | 29.915 | 6.8 | 26 19／26 | 67 | N to NW | N to NW | 1.279 | 0. | 6.0 | 2.1 |
| September | 29.850 | 8.0 | 22 26／15 | 84 | N to NW | NW | 1.973 | 0.6 | 6.1 | ． 5 |
| October | 29.835 | 8.1 | $198 / 12$ | 74 | N to NW | SE \＆NW | 3.014 | 0.5 | 6.4 | ． 2 |
| November | 29.816 | 8.0 | 21 18／55 | 67 | N to NW | SE | 3.767 | 0.7 | 6.4 | 1.5 |
| December | 29.817 | 7.7 | 23 1／34 | 62 | N to NW | SE | 4．333 | 0.7 | 6. | 1.3 |
| Year $\left\{\begin{array}{l}\text { Totals ．} \\ \text { Averages } \\ \text { Extremes }\end{array}\right.$ | 29.900 | 7.2 | 26 － $9 / 8 / 25$ | － | N to NW | SE | 31．214 | $7 \cdot 9$ | 6．1 | 23.1 |

Temperature and Sunshine．

（a）27／49 and $1 / 00$ ．
（b） $9 / 37$ and $11 / 37$ ．
（c） $5 / 86$ and $13 / 05$ ．
（d）$-/ 89$ and $-/ 93$ ．
（e） $1 / 86$
and $-/ 99$ ．
（f）Total for year．
Humidty，Ransfall and Fog．

（a）Also 4.18 inches on $28 / 54$ ．

## § 3. Standard Times in Australia.

Prior to 1895 the official time adopted in the several colonies was for most purposes the mean solar time of the capital city of each.

In November, 1892, an intercolonia! conference of surveyors was held in Meltourne to consider, among other things, the advantages of introducing the system of standard time. In this system it was proposed to make the initial meridian that of Greenwich, and to change local standard time by whole hours according to the longitude east or west of that of Greenwich. Thus for every difference of $15^{\circ}$ in longitude a change of one hour would be required. The minutes and seconds would then be identical everywhere.

To give effect to this proposal it was suggested that Australia should be divided into three zones, the standard times for which should be respectively the mean solar times of the meridians of $120^{\circ}, 135^{\circ}$ and $150^{\circ} \mathrm{E}$. longitude, thus giring standard timea 8, 9 and 10 hours respectively abead of Greenwich time. It was proposed that the $120^{\circ}$ zone should comprise Western Australia, that the $135^{\circ}$ zone should comprise South Australia and the Northern Territory, and that the $50^{\circ}$ zone should comprise Queensland, New South Wales, Victoria and Tasmania.

The matter was also considered by several intercolonial postal conferences, and eventually in 1894 and 1895 legislation was enacted by each of the colonies in accord with the recommendations of the Survevors Conference of 1892.

In I 898 the South Australian legislature amended its earlier provision, and adopted the mean solar time of the meridian $142^{\circ} 30^{\prime}$ E. longitude as the standard time for that colony, thus reducing the difference between the standard time of Adelaide and that of the capitals of the eastern colonies from an hour to half-an-hour. Particulars concerming these enactments are as follows:-

Standarit Times in Austratia.


The standard time in the Australian Capital Territory is the same as in New South Wales, and in Northern Territory the same as in South Australia.

Consequent upon the opening of the Trans-Australian Railway au arrangement has been made by which the change of time between South Australia and Western Australia (namely, It hours) is divided into twe changes of 45 mimutes each. Going east from Kalgoorlie the first change is made at Rawlinna, 235.18 miles out, where the time is but forward by 45 minutes. The second change of the same amount is made at Tarcools. 794.05 miles out. Thenceforward South Australian standard time is kept. The Commonwealth Observatory at Mount Stromlo, Canberra, and the State Observatories: at Sydney, Adelaide, and Perth, derive time by astronomical observation. A Commonwealth Time Service is at present being developed.


[^0]:    * In Aitotralia, artificial storage ponds or rescrvoirs are called "tanks."

[^1]:    (a) Varlous years.
    (b) Varlous months in varions years.

